Bibliography

1
L. Schlapbach, A. Züttel, P. Gröning, O. Gröning, and P. Aebi, Hydrogen for novel materials and devices, Applied Physics A-Materials Science & Processing 72 (2), pp. 245-253, Feb. 2001.
doi:10.1007/s003390100790

2
L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (6861), pp. 353-358, Nov. 2001.
doi:10.1038/35104634

3
M. Fleischmann and S. Pons, Electrochemically Induced Nuclear-Fusion Of Deuterium, Journal Of Electroanalytical Chemistry 261 (2A), pp. 301-308, Apr. 1989.

4
``The FreedomCAR and Vehicle Technologies (FCVT) Program.''
http://www1.eere.energy.gov/vehiclesandfuels/

5
R. F. Service, The hydrogen backlash Aug. 2004.

6
M. Conte, P. Prosini, and S. Passerini, Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials, Materials Science And Engineering B-Solid State Materials For Advanced Technology 108 (1-2), pp. 2-8, Apr. 2004.
doi:10.1016/j.mseb.2003.10.107

7
J. Huot, J. F. Pelletier, G. Liang, M. Sutton, and R. Schulz, Structure of nanocomposite metal hydrides, Journal Of Alloys And Compounds 330, pp. 727-731, Jan. 2002.
doi:10.1016/S0925-8388(01)01662-0

8
P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan, Interaction of hydrogen with metal nitrides and imides, Nature 420 (6913), pp. 302-304, Nov. 2002.
doi:10.1038/nature01210

9
N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Hydrogen Storage in Microporous Metal-Organic Frameworks, Science 300 (5622), pp. 1127-1129, May 2003.
doi:10.1126/science.1083440

10
D. J. Browning, M. L. Gerrard, J. B. Lakeman, I. M. Mellor, R. J. Mortimer, and M. C. Turpin, Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism, Nano Letters 2 (3), pp. 201-205, March 2002.

11
A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature 386 (6623), pp. 377-379, Mar. 1997.
doi:10.1038/386377a0

12
W. Grochala and P. P. Edwards, Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen, Chemical Reviews 104 (3), pp. 1283-1315, Mar. 2004.
doi:10.1021/cr030691s

13
A. Gutowska, L. Li, Y. Shin, C. Wang, X. Li, J. Linehan, R. Smith, B. Kay, B. Schmid, W. Shaw, M. Gutowski, and T. Autrey, Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane, Angewandte Chemie International Edition 44 (23), pp. 3578-3582, 2005.
doi:10.1002/anie.200462602

14
K. J. Gross, G. J. Thomas, and C. M. Jensen, Catalyzed alanates for hydrogen storage, Journal Of Alloys And Compounds 330, pp. 683-690, Jan. 2002.
doi:10.1016/S0925-8388(01)01586-9

15
O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials, Nature 423 (6941), pp. 705-714, June 2003.
doi:doi: 10.1038/nature01650

16
M. Eddaoudi, H. L. Li, and O. M. Yaghi, Highly porous and stable metal-organic frameworks: Structure design and sorption properties, Journal Of The American Chemical Society 122 (7), pp. 1391-1397, Feb. 2000.
doi:10.1021/ja9933386

17
C. Carpetis and W. Peschka, A Study On Hydrogen Storage By Use Of Cryoadsorbents, International Journal Of Hydrogen Energy 5 (5), pp. 539-554, 1980.
doi:10.1016/0360-3199(80)90061-0

18
R. Chahine and T. K. Bose, Low-Pressure Adsorption Storage Of Hydrogen, International Journal Of Hydrogen Energy 19 (2), pp. 161-164, Feb. 1994.
doi:10.1016/0360-3199(94)90121-X

19
S. Orimo, G. Majer, T. Fukunaga, A. Zuttel, L. Schlapbach, and H. Fujii, Hydrogen in the mechanically prepared nanostructured graphite, Applied Physics Letters 75 (20), pp. 3093-3095, Nov. 1999.
doi:10.1063/1.125241

20
D. M. Chen, T. Ichikawa, H. Fujii, N. Ogita, M. Udagawa, Y. Kitano, and E. Tanabe, Unusual hydrogen absorption properties in graphite mechanically milled under various hydrogen pressures up to 6 MPa, Journal Of Alloys And Compounds 354 (1-2), pp. L5-L9, May 2003.
doi:10.1016/S0925-8388(02)01355-5

21
J. B. Pang, J. E. Hampsey, Z. W. Wu, Q. Y. Hu, and Y. F. Lu, Hydrogen adsorption in mesoporous carbons, Applied Physics Letters 85 (21), pp. 4887-4889, Nov. 2004.
doi:10.1063/1.1827338

22
W. Deng, X. Xu, and W. Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation, Physical Review Letters 92 (16), p. 166103, April 2004.
doi:10.1103/PhysRevLett.92.166103

23
K. Kadono, H. Kajiura, and M. Shiraishi, Dense hydrogen adsorption on carbon subnanopores at 77 K, Applied Physics Letters 83 (16), pp. 3392-3394, Oct. 2003.
doi:10.1063/1.1621073

24
M. Rzepka, P. Lamp, and M. A. de la Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes, Journal Of Physical Chemistry B 102 (52), pp. 10894-10898, Dec. 1998.

25
P. Chen, X. Wu, J. Lin, and K. L. Tan, High H$_2$ uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science 285 (5424), pp. 91-93, July 1999.
doi:10.1126/science.285.5424.91

26
Q. Y. Wang and J. K. Johnson, Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores, Journal Of Chemical Physics 110 (1), pp. 577-586, Jan. 1999.

27
P. Kowalczyk, R. Hoyst, M. Terrones, and H. Terrones, Hydrogen storage in nanoporous carbon materials: myth and facts, Physical Chemistry Chemical Physics 9, pp. 1786-1792, 2007.
doi:10.1039/b618747a

28
Y. Gogotsi, R. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. Fischer, Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage, Journal of the American Chemical Society 127 (46), pp. 16006-16007, 2005.
doi:10.1021/ja0550529

29
C. Liu and H. M. Cheng, Carbon nanotubes for clean energy applications, Journal Of Physics D-Applied Physics 38 (14), pp. R231-R252, July 2005.
doi:10.1088/0022-3727/38/14/R01

30
A. V. Eletskii, Sorption properties of carbon nanostructures, Physics-Uspekhi 47 (11), pp. 1119-1154, Nov. 2004.

31
Y. S. Nechaev, The nature, kinetics, and ultimate storage capacity of hydrogen sorption by carbon nanostructures, Physics-Uspekhi 46, pp. 563-591, 2006.
doi:10.1070/PU2006v049n06ABEH002424

32
R. Ströbel, J. Garche, P. T. Moseley, L. Jorissen, and G. Wolf, Hydrogen storage by carbon materials, Journal Of Power Sources 159 (2), pp. 781-801, Sep. 2006.
doi:10.1016/j.jpowsour.2006.03.047

33
F. London, Zur Theorie und Systematik der Molekularkräfte, Zeitschrift für Physik 63, p. 245, 1930.
doi:10.1007/BF01421741

34
S. Patchkovskii and T. Heine, Evaluation of adsorption free enery of light guest molecules in nanoporious host structures, Physical Chemistry Chemical Physics, Feb. 2007.
doi:10.1039/b617657g

35
T. L. Hill, An Introduction to Statistical Thermodynamics, Dover, New York, 1986.

36
R. L. Mills, D. H. Liebenberg, J. C. Bronson, and L. C. Schmidt, Equation of state of fluid $n$-H$_2$ from $P-V-T$ and sound-velocity measurements to 20 kbar, Journal Of Chemical Physics 66 (7), pp. 3076-3084, 1977.
doi:10.1063/1.434324

37
C. Møller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Physical Review 46 (7), pp. 0618-0622, Oct 1934.
doi:10.1103/PhysRev.46.618

38
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review B 136 (3B), p. B864, 1964.
doi:10.1103/PhysRev.136.B864

39
A. Ruiz, J. Hernandez-Rojas, J. Breton, and J. M. G. Llorente, Low-temperature dynamics and spectroscopy in exohedral rare-gas $C_{-60}$ fullerene complexes, Journal Of Chemical Physics 114 (12), pp. 5156-5163, March 2001.

40
T. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, Journal of Chemical Physics 90 (2), pp. 1007-1023, Jan. 1989.
doi:10.1063/1.456153

41
A. Schafer, C. Huber, and R. Ahlrichs, Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms Li to Kr, Journal of Chemical Physics 100 (8), pp. 5829-5835, April 1994.

42
J. I. Steinfeld, Molecules and Radiation, 2nd edn ed., MIT Press, Cambridge, 1993.
Section 4.1

43
L. D. Landau and E. M. Lifshits, Quantum Mechanics (non-relativistic theory), Pergamon Press, Oxford, 1977.
§107

44
W. Kohn and L. J. Sham, Self-Consistent equations including exchange and correlation effects, Physical Review 140 (4A), p. 1133, 1965.
doi:10.1103/PhysRev.140.A1133

45
A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, Journal Of Chemical Physics 98 (2), pp. 1372-1377, Jan. 1993.
doi:10.1063/1.464304

46
W. J. Hehre, Ditchfie.R, and J. A. Pople, Self-consistent molecular-orbital methods .XII. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic-molecules, Journal Of Chemical Physics 56 (5), p. 2257, 1972.
doi:10.1063/1.1677527

47
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, ``Gaussian 98, Revision A.7,.''
Gaussian, Inc., Pittsburgh PA, (1998).

48
T. P. Straatsma, E. Apra, T. L. Windus, E. J. Bylaska, W. de Jong, S. Hirata, M. Valiev, M. T. Hackler, L. Pollack, R. J. Harrison, and et al., `` NWCHEM, A Computational Chemistry Package for Parallel Computers.'' Pacific Northwest National Laboratory, Richland, WA, 2005.
Version 4.7

49
F. Boys, F. S.; Bernardi, The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures With Reduced Errors, Molecular Physics 19 (4), pp. 553-556, 1970.

50
O. Hübner, A. Gröss, M. Fichtner, and W. Klopper, On the interaction of dihydrogen with aromatic systems, Journal of Physical Chemistry A 108 (15), pp. 3019-3023, April 2004.
doi:10.1021/jp031102p

51
M. Hirscher and M. Becher, Hydrogen storage in carbon nanotubes, Journal Of Nanoscience And Nanotechnology 3 (1-2), pp. 3-17, 2003.
doi:10.1166/jnn.2003.172

52
F. Tran, J. Weber, T. A. Wesolowski, F. Cheikh, Y. Ellinger, and F. Pauzat, Physisorption of Molecular Hydrogen on Polycyclic Aromatic Hydrocarbons: A Theoretical Study, Journal of Physical Chemistry B 106 (34), pp. 8689 -8696, April 2002.
doi:10.1021/jp015590h

53
Y. Okamoto and Y. Miyamoto, Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes, Journal Of Physical Chemistry B 105 (17), pp. 3470-3474, May 2001.

54
P. Diep and J. K. Johnson, An accurate H$_2-$H$_2$ interaction potential from first principles, Journal Of Chemical Physics 112 (10), pp. 4465-4473, March 2000.

55
P. Diep and J. K. Johnson, An accurate H$_2-$H$_2$ interaction potential from first principles (vol 112, pg 4465, 2000), Journal Of Chemical Physics 113 (8), pp. 3480-3481, Aug. 2000.

56
L. Mattera, F. Rosatelli, C. Salvo, F. Tommasini, U. Valbusa, and G. Vidali, Selective Adsorption Of H-1(2) And H-2(2) On The (0001) Graphite Surface, Surface Science 93 (2-3), pp. 515-525, 1980.

57
Y. X. Zhao and I. L. Spain, X-Ray-Diffraction data for graphite to 20 gpa, Physical Review B 40 (2), pp. 993-997, July 1989.
doi:10.1103/PhysRevB.40.993

58
T. L. Hill, Statistical Mechanics, Dover, New York, 1987.

59
S. Patchkovskii and J. S. Tse, Thermodynamic stability of hydrogen clathrates, Proceedings of the National Academy of Sciences of the United States of America 100 (25), pp. 14645-14650, 2003.
doi:10.1073/pnas.2430913100

60
L. A. Girifalco and R. A. Lad, Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System, Journal of Chemical Physics 25 (4), pp. 693-697, Oct. 1956.
doi:10.1063/1.1743030

61
M. M. Calbi and M. W. Cole, Dimensional crossover and quantum effects of gases adsorbed on nanotube bundles, Physical Review B 66 (11), p. 115413, Sep. 2002.
doi:10.1103/PhysRevB.66.115413

62
Q. Wang and J. Johnson, Hydrogen adsorption on graphite and in carbon slit pores from path integral simulations, Molecular Physics 95 (2), pp. 299-309, Oct. 1998.
doi:10.1080/002689798167223

63
S. R. Challa, D. S. Sholl, and J. K. Johnson, Adsorption and separation of hydrogen isotopes in carbon nanotubes: Multicomponent grand canonical Monte Carlo simulations, Journal Of Chemical Physics 116 (2), pp. 814-824, Jan. 2002.
doi:10.1063/1.1423665

64
K. A. Williams and P. C. Eklund, Monte Carlo simulations of H$_2$ physisorption in finite-diameter carbon nanotube ropes, Chemical Physics Letters 320 (3-4), pp. 352-358, Apr. 2000.
doi:10.1016/S0009-2614(00)00225-6

65
F. Darkrim, J. Vermesse, P. Malbrunot, and D. Levesque, Monte Carlo simulations of nitrogen and hydrogen physisorption at high pressures and room temperature. Comparison with experiments, Journal Of Chemical Physics 110 (8), pp. 4020-4027, Feb. 1999.
doi:10.1063/1.478283

66
S. Chan, M. Ji, X. Gong, and Z. Liu, Pressure-driven confinement of hydrogen molecules between graphene sheets in the regime of van der Waals repulsion, Physical Review B-Condensed Matter 69, p. 092101, 2004.
doi:10.1103/PhysRevB.69.092101

67
J. S. Arellano, L. M. Molina, A. Rubio, M. J. Lopez, and J. A. Alonso, Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes, Journal Of Chemical Physics 117 (5), pp. 2281-2288, Aug. 2002.
doi:10.1063/1.1488595

68
M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G. S. Duesberg, Y. M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, and P. Bernier, Hydrogen storage in sonicated carbon materials, Applied Physics A-Materials Science & Processing 72 (2), pp. 129-132, Feb. 2001.

69
M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y. M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, and J. Fink, Hydrogen storage in carbon nanostructures, Journal Of Alloys And Compounds 330, pp. 654-658, Jan. 2002.

70
A. Chambers, C. Park, R. T. K. Baker, and N. M. Rodriguez, Hydrogen storage in graphite nanofibers, Journal Of Physical Chemistry B 102 (22), pp. 4253-4256, May 1998.
doi:10.1021/jp980114l

71
Q. Y. Wang, S. R. Challa, D. S. Sholl, and J. K. Johnson, Quantum sieving in carbon nanotubes and zeolites, Physical Review Letters 82 (5), pp. 956-959, Feb. 1999.
doi:10.1103/PhysRevLett.82.956

72
L. Zhechkov, T. Heine, and G. Seifert, Physisorption of N$_2$ on graphene platelets: An Ab initio study, International Journal of Quantum Chemistry 106 (6), pp. 1375-1382, Dec. 2005.
doi:10.1002/qua.20895

73
M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment, Journal of Chemical Physics 114 (12), pp. 5149-5155, March 2001.
doi:10.1063/1.1329889

74
L. Zhechkov, T. Heine, S. Patchkovskii, G. Seifert, and H. Duarte, An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding, Journal of Chemical Theory and Computation 1 (5), pp. 841-847, 2005.
doi:10.1021/ct050065y

75
G. Seifert, D. Porezag, and T. Frauenheim, Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme, International Journal of Quantum Chemistry 58 (2), pp. 185-192, April 1996.
doi:10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U

76
A. M. Köster, R. Flores, G. Geudtner, A. Goursot, T. Heine, S. Patchkovskii, J. U. Reveles, A. Vela, and D. R. Salahub, Demon deMon 2003.

77
K. Guerin, J. P. Pinheiro, M. Dubois, Z. Fawal, F. Masin, R. Yazami, and A. Hamwi, Synthesis and characterization of highly fluorinated graphite containing $sp^2$ and $sp^3$ carbon., Chemistry of Materials 16 (9), pp. 1786-1792, 2004.

78
V. Gupta, T. Nakajima, Y. Ohzawa, and B. Zemva, A study on the formation mechanism of graphite fluorides by Raman spectroscopy., Journal of Fluorine Chemistry 120 (2), pp. 143-150, 2003.

79
H. Y. He, J. Klinowski, M. Forster, and A. Lerf, A new structural model for graphite oxide., Chemical Physics Letters 287 (1-2), pp. 53-56, 1998.

80
A. Lerf, H. Y. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited., Journal of Physical Chemistry B 102 (23), pp. 4477-4482, 1998.

81
R. H. Telling, C. P. Ewels, A. A. El-Barbary, and M. I. Heggie, Wigner defects bridge the graphite gap., Nature Material 2 (5), pp. 333-337, 2003.

82
V. Gupta, P. Scharff, K. Risch, H. Romanus, and R. Muller, Synthesis of C$_60$ intercalated graphite., Solid State Communications 131 (3-4), pp. 153-155, 2004.
doi:10.1016/j.ssc.2004.05.018

83
A. Kuc, L. Zhechkov, S. Patchkovskii, G. Seifert, and T. Heine, Hydrogen Sieving and Storage in Fullerene Intercalated Graphite, Nano Letters 7 (1), pp. 1-5, Jan. 2007.
doi:DOI: 10.1021/nl0619148

84
M. S. Dresselhaus and I. L. Thomas, Alternative energy technologies, Nature 414 (6861), pp. 332-337, Nov. 2001.

85
N. N. Greenwood and A. Earnshaw, Chemistry of the elements, Elsevier: Amsterdam, 1997.

86
Y. Malozovsky, V. Subramanian, T. Reese, and B. Rambabu 2002.

87
H. R. Karfunkel and T. Dressler, New hypothetical carbon allotropes of remarkable stability estimated by MNDO solid-state SCF computations, Journal of the American Chemical Sosiety 114 (7), pp. 2285-2288, March 1992.
doi:10.1021/ja00033a001

88
A. T. Balaban, D. J. Klein, and C. A. Folden, Diamond-graphite hybrids, Chemical Physics Letters 217 (3), pp. 266-270, Jan. 1994.
doi:balaban

89
K. Umemoto, S. Saito, S. Berber, and D. Tomanek, Carbon foam: Spanning the phase space between graphite and diamond, Physical Review B 64 (19), p. 193409, Nov. 2001.
doi:10.1103/PhysRevB.64.193409

90
A. Kuc and G. Seifert, Hexagon-preserving carbon foams: Properties of hypothetical carbon allotropes, Physical Review B 74 (21), p. 214104, Dec. 2006.
doi:10.1103/PhysRevB.74.214104

91
P. J. Ouseph, Observation of prismatic dislocation loops in graphite by scanning tunneling microscope, Physica Status Solidi A-Applied Research 169 (1), pp. 25-32, Sept. 1998.
doi:10.1002/(SICI)1521-396X(199809)169:1<25::AID-PSSA25>3.0.CO;2-0

92
I. Suarez-Martinez, G. Savini, and M. I. Heggie, First Principles Modelling of Prismatic Edge and Screw Dislocations in Graphite Chemistry Department, University of Sussex, Falmer , Brighton BN1 9QJ, July 2006.

93
X. Lu and Z. F. Chen, Curved $\pi$-conjugation, aromaticity, and the related chemistry of small fullerenes ($<$ $C_{60}$) and single-walled carbon nanotubes, Chemical Reviews 105 (10), pp. 3643-3696, Oct. 2005.
doi:10.1021/cr030093d

94
T. Guo, M. D. Diener, Y. Chai, M. J. Alford, R. E. Haufler, S. M. Mcclure, T. Ohno, J. H. Weaver, G. E. Scuseria, and R. E. Smalley, Uranium stabilization of C$_{28}$ - a tetravalent fullerene, Science 257 (5077), pp. 1661-1664, Sep. 1992.

95
H. W. Kroto and D. R. M. Walton, Stable Derivatives Of Small Fullerenes, Chemical Physics Letters 214 (3-4), pp. 353-356, Nov. 1993.

96
Z. F. Chen, H. J. Jiao, M. Buhl, A. Hirsch, and W. Thiel, Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues, Theoretical Chemistry Accounts 106 (5), pp. 352-363, Oct. 2001.

97
Y. N. Makurin, A. A. Sofronov, A. I. Gusev, and A. L. Ivanovsky, Electronic structure and chemical stabilization of C$_{28}$ fullerene, Chemical Physics 270 (2), pp. 293-308, Aug. 2001.

98
B. I. Dunlap, O. D. Häberlen, and N. Rösch, Asymmetric Localization Of Titanium In C$_{28}$, Journal Of Physical Chemistry 96 (23), pp. 9095-9097, Nov. 1992.

99
K. Jackson, E. Kaxiras, and M. R. Pederson, Electronic states of group-iv endohedral atoms in C$_{28}$, Physical Review B 48 (23), pp. 17556-17561, Dec. 1993.

100
K. Jackson, E. Kaxiras, and M. R. Pederson, Bonding of endohedral atoms in small carbon fullerenes, Journal Of Physical Chemistry 98 (32), pp. 7805-7810, Aug. 1994.

101
A. Canning, G. Galli, and J. Kim, Carbon superatom thin films, Physical Review Letters 78 (23), pp. 4442-4445, June 1997.

102
K. Choho, G. Van de Woude, G. Van Lier, and P. Geerlings, An ab initio quantum chemical study on the structure, stability and polymerization of C$_{28}$ and its derivatives, Journal Of Molecular Structure-Theochem 417 (3), pp. 265-276, Oct. 1997.



Subsections

Lyuben Zhechkov 2007-09-04